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An important feature of the high-velocitydeformation of solids is the localization 
of deformation, one of the causes of which may be the nonisothermal instability of 
plastic flow [1-6]. In connection with the intensive development of high-velocity 
technology in the treatment of materials, the investigation of the criteria for non- 
isothermal stability of processes of plastic deformation is of fundamental interest, 
since in certain cases they determine the optimum technological regimes [5]. The 
critical values of deformation velocities, above which the effects of thermal in- 
stability becomes decisive in the process of deformation of solids, are estimated 
by semiempirical methods in [i]. The non-boundary-value problem of the criteria for 
nonisothermal instability is analyzed in [2] for the point of view of flow stability 
in the so-called coupled formulation. The latter means that the heat-conduction 
equation is added to the basic equations determining the dynamics of an elasto- 
plastic medium. The problem is solved in [6] in an analogous formulation, but for 
flow averaged over the spatial coordinate. The solution of the boundary-value 
problem for one-dimensional flow in this formulation is given in the present paper. 

I. Maxwell's model of an viscoelastic medium, which satisfactorily describes the be- 
havior of a material at high deformation velocities [7], is adopted below. 

In this case, the equations of one-dimensional motion of the medium are written in the 
form 

(~ = ~o exp [ - - f i ( r  - -  To)1) ,  

where p i s  t h e  d e n s i t y  o f  t h e  medium; G i s  t h e  s h e a r  modulus ;  c and X a r e  t h e  s p e c i f i c  h e a t  
and t h e r m a l  c o n d u c t i v i t y  o f  t h e  medium; u i s  t h e  f low v e l o c i t y ;  o i s  t h e  s t r e s s ;  T i s  t h e  
t e m p e r a t u r e ;  ~0 and $ a r e  c o n s t a n t s  in  t h e  Reyno lds  f o r m u l a  f o r  v i s c o s i t y .  

The s y s t e m  ( 1 . 1 )  i s  i n v e s t i g a t e d  f o r  t h e  b o u n d a r y  c o n d i t i o n s  

c3T/Oy -~ O, u = V o a t  y- - - -h ,  

~ , a T / a y  = a ( T  - -  To),  u = O a t  g = O. 

Here ~ is the heat-transfer coefficient at the boundary; V 0 is the velocity of the upper 
boundary; T o is the temperature of the ambient medium. 

We introduce the dimensionless variables [6] 

u = u/Vo, -d = ~/GDI"o, 0 = ~ ( T -  To), 

where t ' =  t / t~ ~ = ~j]h, 

t o = cph]c~; t ,  = cpl ([~oD2);  

t~ = ~0lG; t3 = h2plG, D = Volh; 

to, tl, t2, and t3 are the characteristic times of heat outflow, heat release, elastic relaxa- 
tion, and propagation of elastic waves. 
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In these dimensionless variables, Eqs. (i.i) take the form 

~7 o~ ~ o~' 
--= = A = - -  6a exp  (0),. 

00 I o~O 
---- + xf~'az exp  (O) 

Ot Bi  O~ 

(1,2)  

with the boundary conditions 

0O( l ,  "t)/Og" = 0, 0O(0,. t ) / 0 / ~ =  Bi  O(0,,: ~,, 
= o, = J 

(8 = to/t  2, u = to/t1, A = to/t3, Bi = ~ h / ~ ) .  

The tilde, denoting a dimensionless variable, is omitted below. 
solution of the problem (1.2), (1.3) is 

2c~ [ 1 ~ ] 
uo = ~ i + e~p ( -  q) t + ~ p  (q ( y -  t)) ': 

c~ i - -  exp ( - -  ci) = const,,  
{~o = 6z Bi t + .exp  (--  ci) ~ 

2c~ exp (Q (g - -  I)) 

exp  (Oo) = 62 n Bi go2[t + exp (cl (y - -  t))]2 " 

(1.3) 

The steady-state 

(1.4) 

where the integration constant c I is found from the condition 

( e x p ( c l ) - - I ) 2 ~ . _ [  61 / e x p ( c l ) - - l ) ]  
2 Bi oxp (cl) [ �9 + . 

Setting 

u =Uo(V) + u'(v)e~t, ~ = % @ +  ~' (v )e~ ,  

O = Oo(y ) + O ' ( y ) e ~ ,  

we obtain the problem of the stability of the steady-state solution (1.4) against small 
disturbances u'(y), o'(y), 0'(y): 

~u'  = A d a ' / @ ,  

~a '  = d u ' / d g  - - 5 ~ '  exp  (0o) - -  5 % 0 '  exp  (@o), 

i d 20 '  + • exp  (0o) + 2• ~ '  exp  (Oo). ~O'  Bi dv~ 

(1 . s )  

Here the parameter ~ characterizes the intensity of growth of the disturbances. If 
Re B > 0, the flow is unstable. In place of (1.3), we find the boundary conditions for u', 
G' and 0': 

d@' /dy  = O, u ~ = 0 a t  g = I ,  ( 1 . 6 )  

d@' /dy  = B i O ' ,  u '  = t a t  g === 0. 

To seek the eigenvalues 6, Eqs. (1.5) and (1.6) were represented in the form of a system 
of eight ordinary, first-order differential equations (for the real and imaginary parts of 
the disturbances). Two linearly independent particular solutions, for which the conditions 
(1.6) are satisfied at the initial point of integration (at y = 0), were constructed 
numerically by the Runge-Kutta method. Then a linear combination of these particular solu- 
tions was constructed. The necessity of satisfying the boundary conditions at y = I leads 
to a characteristic equation, from which the eigenvalues of the problem are found. This 
procedure for solving stability problems using the numerical construction of particular 
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solutions bythe Runge-Kutta method was discussed in [8]. 

The results of calculations of the region of instability for different values of the 
parameters 6, ~, Bi, and A are presented in Fig. i (Bi = 16, 4, i, and 0.01 for lines 1-4). 
The flow is unstable in the region adjacent to the K axis. The boundaries for A = 0 with 
the corresponding values of Bi are shown by dashed lines, while the boundaries for A = i 
are shown by solid lines (the curves for larger A do not vary to within the accuracy of 
plotting of the graph). It is seen that the boundary of the region depends fundamentally 
on Bi, the parameter A affects its position to a lesser degree, and the dependence on A is 
insignificant for Bi < i. 

2. In connection with the indicated fact of the insignificant dependence of the sta- 
bility boundary on A in the indicated region of values of Bi and K, it is advisable to 
analyze the problem for A = 0 [without the first equation of (1.5)]. 

In this case, the system of equations for the disturbances has the form 

~ '  = - - 6 o '  exp (Oo) - -  6Oo0' exp (0o), ( 2 . 1 )  

t dZO + • exp (Oo) + 2• ' exp (00) ~ 0 ' =  %-7 dv---r 

with the boundary conditions (1.6). 

The solution of the problem was sought by the method described in Sec. i and by Galerkin' 
method (a numerical realization of the method using the QR algorithm [9] for determining 
eigenvalues was executed by G. A. Korolev) in the form of an expansion 

;:). 
As the system of base functions, we chose the eigenfunctions of the problem (1.6), (2.1) 

for e0 =const, 

~n = t ] ] / ' 2  cos =rig,: (2.2) 

~ = l ] [ [ r  o e  y + (oolBi)  cos oey)~ 

where m0 is determined from the relation 

~otg oe = Bi; (2.3) 

llCnll is a normalization factor. The system of functions (2.2) is complete and ortho- 
normalized in the segment [0; i]. 

The results obtained by both methods coincide with those found from the solution of the 
complete problem (as A * 0), marked by dashed lines in Fig. I. 

For comparison, ls us consider th_e same problem (A = 0), but for a constant value of the 
steady-state solution O 0 =const [for 00 we can take the expression O0(y) from the third 

I 

equation of (1.4), averaged over the coordinate 

mits of an analytic solution. 

Equations (1.5) are reduced to one equation, 

.[ Oo(y)dy ]. In this case, the problem ad- 
o 

. d2@' ldy  "" + MO' = O~ 
,, o " 2xo;6 exp (200) 

where M=Bi x6"~gexp(O0)-- ~_6exp(O0) --3 It is easy to show that the eigenfunctions of 

the problem (2.3) with the boundary conditions (1.6) will be the functions ~n from (2.2) in 
which ~ = M. 

For unstable disturbances, Re ~ > 0 (for at least one root). Therefore, using the 
Hurwitz conditions, from the characteristic equation we find the criterion for flow instability: 

~$/Bi + 6 exp (Oo) -- z62ao exp (go) < 0, (2.4) 
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The boundaries of the regions defined by this relation coincide, to within the accuracy 
in plotting the graph for the different Bi, with the dashed curves in Fig. i, obtained from the 
solution of the complete problem. 

As Bi § 0, we have w~/Bi § 1 from (2.3), and (2.4) changes into the condition 

t + 5 e x p  (0o) ~ ~ -- • ~; e x p  (~o) < O~ 

coinciding with the instability criterion of [6]. 

3. To clarify the character of the nonsteady motion of the medium after stability loss, 
we made a numerical analysis of the complete nonlinear system (1.2) with the boundary condi- 
tions (1.3). The difference scheme was constructed on the basis of the method of integral 
relations [i0]. 

On a grid mh,~ = Wh • ~w, 

~ = { ~  = ]% ] = 0~1~ 2 . . . .  } ,  
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the system of equations (1.2) with the conditions (1.3) is approximated on the difference 
scheme 

h[ (= ) (~ ,  + 8~  ~ x p  ( ~ )  - (=) ( . ,  + $ 8  o x p  o ) ) 1  + A~((r(~ ~) - -  ( r -  (~,) = 0 .  
V 

h((~)O --  (r)b) + (WBi) (0~) --  O~ (*)) x6*hx (~) (a z exp (~))(v) = O, 

in which t h e  f o l l o w i n g  n o t a t i o n  [10] i s  used :  

'J(yi, tA = (r, ,~ (y i •  h, t j ) =  a(__+l),  

o(y,,  tj + r) = ~., (r(y~, t~ - -  -r) = j,. 

at, = ( ~ ( + t )  - ~)lh, ,~;j = (<r - -  ( r ( - - 1 ) ) l h ,  ,~  = ~',~ - -  <s)l'~, 

To estimate the accuracy, we compare the results of calculations with time steps 
and ~/2. The weight factors of the difference scheme were chosen from the conditions of 

stability fo the trial-run method [10] used to solve the system of algebraic equations, 
and they were all taken as 0.5. In choosing the time step in the first approximation, 
were oriented to relations valid for an ordinary explicit difference scheme: 

T < + e x p  ( - -  o~i~Nmax Oi),/..~ < Bi h2/2. ( 3 . 1 )  

These relations were subsequently refined empirically in the calculation process. 
In this case the stability of the scheme was assured, as a role, with time steps larger 
than follows from the relations (3.1). 

4. In Fig. 2 we give the characteristic regions of behavior of the solutions for A = 1 
and Bi = i: I is the region of fluctuations about the stationary point (unstable regime). 
Here the region of stability from the point of view of the linear problem of Secs. 1 and 
2 is divided into two (II and III). In region II the stationary point is a stable "focus" 
while in region III it is a stable "node"; in the first case 

lira (/i (go, t) --  j?)(Yo)) = O, 

while in the second case 

I~ (~, t) - I? )  (go) = o ,  t > t* ,  

where fi is u, o, or O; f(~) is the steady-state solution (1.4); 0 < Y0 < I. 

In Fig. 3 we present a phase diagram (oJ, 8) for the region of self-oscilaltions of 
the averaged o and 0 for A = I, Bi = 16, 6 = 0.02, and < = 3.5. The averaging was carried 

N 
i out through the formula <al> _ N + I ~  The limiting cycle in this diagram is formed 

i=0 

around <o0>, <80>, the averaged stationary point. 

The variation of the distribution of <o> and <0> over y as a function of time is shown 
in Fig. 4. Curves 1-4 in Fig. 4 correspond to points 1-4 in Fig. 3. The function u(y, t o ) 
at t > 0 differs slightly from u(y, 0) = y. 

For the period of the oscillations of <o> and <8> (in region I) obtained through the 
present calculation we can use the same formula as in [6], derived in the solution of the 

averaged problem, T = 6-~176 21) , with the same accuracy (10-15%). Thus, in the 
region of < ~ 20 under consideration, there is no significant dependence of T on Bi and A. 

For the amplitude of the oscillations we present characteristic graphs of the dependence 
on 6 and < in Fig. 5. Nor is a significant dependence of the amplitudes on Bi and A found 
for K ~ 20. It should be noted that a stable calculation by the difference scheme could not 
be achieved for all values of 6 and K. The approximate boundary of the region of stability 
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of the scheme for Bi = 1 and A = 1 is marked by a dashed line in Fig. 2. For K > e, the 
amplitude of the oscillations of <o> and <6> grows faster than exponentially as 6 decreases 
(Fig. 5). 

The analysis of the linear (with respect to small disturbances) boundary-value problem 
presented in Secs. 1 and 2 makes it possible to determine the region of thermal instability 
of the flow of a viscoelastic medium as a function of the dimensionless parameters A, Bi, 
<, and 6. It is shown that for low values of < and Bi, the dependence on the parameter A is 
insignificant, and the approximate criterion (2.4), obtained analytically, can be used. 
As Bi § 0, the latter changes into the criterion found in [6] in an analysis of the averaged 
(over the spatial coordinate) problem. The numerical solution of the nonlinear problem 
basically confirmed the results of the linear analysis, and made it possible to establish the 
laws of development of the flow after the loss of stability. 
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